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Abstract

A stochastic model for the space–time turbulent boundary-layer wall-pressure spectrum is developed that uses

statistical data from Reynolds-Averaged Navier–Stokes (RANS) solutions as input. The model integrates the source

terms for the surface-pressure covariance across the boundary layer for user-specified space and time separations to

form a discrete surface-pressure correlation function, the Fourier transform of which yields the surface-pressure

wavenumber-frequency spectrum. By integrating RANS data into the model, it is able to respond to local geometry and

flow conditions. Validation cases show that predicted surface-pressure power spectra respond appropriately to

favorable, zero, and adverse pressure gradients. By operating as a post-processor of CFD RANS analyses, the model is

a predictive tool that can be used in flow and flow-induced noise analyses. Because contemporary RANS models are

able to predict flow statistics well for configurations of practical interest, this approach to modeling the turbulent

boundary-layer forcing function is expected to generalize well to new flow configurations without requiring flow-specific

tuning.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

The bulk of research on the behavior of the velocity and pressure fluctuations within turbulent boundary layer (TBL)

flows has been conducted under ideal conditions, such as on flows with zero pressure gradient over flat plates

(Klebanoff, 1954), and inside cylinder (pipe) interiors (Laufer, 1954) and channels (Laufer, 1950). Estimates have been

made by many authors of the wall-pressure autospectra and cross-spectra for a variety of flow speeds and fluid

properties. The survey by Bull (1996) summarizes much of the existing research. The wall-pressure autospectra may be

collapsed reasonably well using combinations of the so-called inner or outer flow variables, where outer variable scaling

collapses low-frequency levels well, and inner variable scaling collapses high-frequency levels well. Keith et al. (1991)

explored mixed variable scaling, where the frequency is scaled on outer variables and the pressure levels scaled on inner

variables, and obtained good general collapse of levels over all frequencies.

Empirical models of wall-pressure autospectra under zero pressure gradient TBL flow have been proposed by several

authors, such as Corcos (1963), Chase (1980, 1987) and Smolyakov and Tkachenko (1991), that are essentially curve fits

to the scaled measured data sets. For example, Fig. 1 shows the model of Smolyakov and Tkachenko plotted against
e front matter r 2007 Elsevier Ltd. All rights reserved.
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Nomenclature

Cij 2-point fluctuating velocity correlation func-

tion (SAM model)

Cf skin-friction coefficient (2(u*/ue)
2)

f, g isotropic turbulence functions (SAM model)

G Green’s function

i, j, k indices

k turbulence kinetic energy

k+ turbulence kinetic energy in wall units

‘ turbulence length scale

‘+ turbulence length scale in wall units

Lr reference length for nondimensionalization

p fluctuating pressure

P mean pressure

q turbulent kinetic energy

r, r* radius and effective radius (SAM model)

ri Cartesian coordinate of correlation space
~r Cartesian coordinate of correlation space

(vector form)

Re Reynolds number from nondimensionaliza-

tion (UrLr=n)
Red boundary-layer thickness Reynolds number

(ued=n)
Re� displacement thickness Reynolds number

(u�d�=n)
Rey momentum thickness Reynolds number (uey/

n)
Rpp 2-point wall-pressure correlation function

SRC source term

t time

TMS turbulence–mean-shear interactions

TT turbulence–turbulence interactions

TTM turbulence normal-stress/shear-stress interac-

tions

TTN turbulence normal-stress/normal-stress inter-

actions

TTS turbulence shear-stress/shear-stress interac-

tions

u� friction velocity
~ui instantaneous velocity

uc convection velocity (SAM model)

ue boundary-layer edge velocity (velocity at d)
ui fluctuating velocity

Ui mean velocity

Ur reference velocity for nondimensionalization

vi fluctuating velocity (2nd point)

Vi mean velocity (2nd point)

xi Cartesian coordinate
~x; ~xs Cartesian coordinates in space, and of sur-

face point s (vector form)
~xk k vector magnitude

xref reference longitudinal coordinate (SAM

model)

y+ wall-normal coordinate in wall units

yj Cartesian coordinate (2nd point)

yref reference wall-normal coordinate (SAM

model)
~y;~ys Cartesian coordinates in space, and of 2nd

surface point s (vector form)

zref reference cross-stream coordinate (SAM

model)

gi stretching coefficients (SAM model)

d boundary-layer thickness

d* boundary-layer displacement thickness

dij Kronecker delta

D~x spatial separation vector

D~r spatial separation vector in correlation space

Dt separation time

y inclination angle (SAM model), boundary-

layer momentum thickness
~k wave vector

Lf turbulence correlation length (SAM model)

n kinematic diffusivity
~x major/minor axes coordinate vector (SAM

model)

xi major/minor axes coordinate (SAM model)

r density

t time (2nd point)

tw wall shear stress

Fpp wavenumber-frequency spectrum, also ra-

dian-frequency spectrum

o radian frequency, inverse time scale for the

q�o turbulence model
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several sets of measured data compiled by Keith et al. using mixed variable scaling. Since all pressure sensors attenuate

high-wavenumber fluctuations over their surfaces to some degree, the well known Corcos correction (1963) is applied to

the measurements shown in Fig. 1.

Empirical models are based on fits to data under ideal conditions. Given limited input data, they can be rescaled to

estimate local wall-pressure autospectra. Real conditions, however, may differ greatly from the ideal ones used to

develop the empirical descriptions. This fact motivates the thought that a physics-based approach that can tailor itself

to the local flow environment may provide an improved predictive capability.

Computational Fluid Dynamics (CFD) tools are routinely used to simulate local flow conditions in geometrically

complicated environments at high Reynolds numbers (UD/n), where U and D are the characteristic velocity and length

scales and n is the kinematic viscosity. Flows past marine vehicles and through engines (Re�109) are examples. These

solutions satisfy model equations that govern fluid flow; solving the Reynolds-Averaged Navier–Stokes (RANS)
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Fig. 1. Smolyakov and Tkachenko TBL wall-pressure autospectra model vs. measured data.
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equation set is the contemporary production approach. CFD methods are very sophisticated and resolve explicitly some

of the complicated nonlinear interactions that characterize fluid dynamics. CFD tools are now used routinely to guide

sensitive engineering decisions, like safety measures for the space shuttle. We suggest that the additional fidelity to

physics offered by CFD may be exploited to improved physics modeling of turbulent wall-pressure spectra.

We propose to integrate through the boundary-layer expressions for the surface-pressure space–time covariance. The

approach requires closure with an empirical model for the space–time velocity correlation and the selection of an

appropriate near-surface Green’s function. The advantage of this approach is that it imposes a priori no structure on

the predicted surface-pressure covariance function and associated wavenumber-frequency spectrum. The predicted

statistics respond to non-ideal boundary layers induced by complicated local flow conditions.

Contributions from two main mechanisms—the interaction of turbulence with the mean-shear distribution

in the flow field (TMS), and the interaction of turbulence with itself (TT) appear in the model. The model

will be exercised on fully-developed channel flow with zero pressure gradient, then applied to internal-flow solutions

from diverging and converging ducts with favorable and adverse pressure gradients. Simulations will be compared to

measured data by Schloemer (1966, 1967). The relative importance of the TMS and TT terms in each type of flow will

be shown.
2. TBL wall-pressure modeling

A common approach to developing contemporary models of the wall pressure autospectra due to TBL flow is to

evolve an expression for the surface-pressure covariance incorporating progressively more restrictive modeling

assumptions, see for example the formulations by Kraichnan (1956), Gardner (1965/1966), Meecham and Tavis (1980)

and Blake (1986). The most restrictive assumptions generally involve closure of turbulence correlations within the

forcing fluid. Without specific knowledge of general flow fields of interest, turbulence closures have relied on

experimental data from simple geometries. Those data may not generalize well to non-trivial flow configurations.

RANS modeling is a computational technique that experience shows is able to provide predictions of the mean

velocity and shear stress statistics of a flow field with reasonable fidelity, even for complicated geometries and flow

conditions. Flow data and basic turbulence parameters are provided by RANS. That data yields local estimates of the

expected flow variables specific to a particular geometry and a particular set of operating conditions.

The RANS data provide one-point velocity and turbulence statistics. Coupled with a model for the two-point velocity

correlation, the RANS data can be used to guide a stochastic model for the surface-pressure space–time covariance and

its Fourier-space counterpart, the surface-pressure wavenumber-frequency spectrum. The modeling approach and

embedded closures for a new model for the surface-pressure forcing function are outlined below. We begin by deriving

an exact expression for the surface-pressure covariance that includes terms to be modeled, then proceed to define

reasonable models to close the expression. The modeling approach is guided by the goal to introduce single-point mean-

flow statistics from a RANS solution as input.
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2.1. The fluctuating-surface-pressure equation

An analytic solution for the fluctuating surface pressure can be formed by integrating the fluctuating pressure Poisson

equation [see Chang et al. (1999), among others, for details] using an appropriate Green’s function

1

r
pð~xs; tÞ ¼

Z
~x
�
q 2Uiuj þ uiuj � uiuj

� �
qxiqxj

Gð~x; ~xsÞd~x. (1)

Our convention represents mean field quantities in upper case and fluctuations in lower case. The overbar denotes

ensemble averaging. Two types of terms are identified, those containing mean-shear interactions with turbulence and

those representing turbulence interactions with itself

1

r
pð~xs; tÞ ¼

Z
~x
� 2

q
qxi

qUi

qxj

uj

� �
Gð~x; ~xsÞ þ

q uiuj � uiuj

� �
qxi qxj

Gð~x; ~xsÞ

� �
d~x. (2)

The right-side of (2) contains derivatives of the source terms contributing to the instantaneous surface pressure

weighted by an influence function (the Green’s function). The reformulation of the first source term to depend on mean-

shear rather than mean-velocity is motivated by the understanding that mean-shear production is the primary

mechanism for turbulence generation in the turbulent-kinetic-energy budget.

For convenience, the spatial derivatives are moved from the source terms to the Green’s functions via repeated

applications of the divergence theorem

1

r
pð~xs; tÞ ¼

Z
~x
� 2

qUi

qxj

uj

� �
qGð~x; ~xsÞ

qxi

þ uiuj � uiuj

� � q2Gð~x; ~xsÞ

qxi qxj

� �
d~x. (3)

This step allows the derivatives to be computed analytically for an analytic model for the Green’s function and reduces

the number of spatial gradients that must be computed from the discrete RANS data.

Eq. (3) can be interpreted as the response from a virtual probe sampling the instantaneous fluctuating-pressure field.

To create a statistic that is tractable through stochastic modeling, a second virtual probe is required, giving the

instantaneous fluctuating-pressure at a second point displaced in space and/or time

1

r
pð~ys; tÞ ¼

Z
~y
� 2

qVk

qyl

vl

� �
qGð~y;~ysÞ

qyk

þ vkvl � vkvlð Þ
q2Gð~y;~ysÞ

qyk qyl

� �
d~y. (4)

The change in notation from x to y and U to V denotes simply that the second point is independent of the first one.

2.2. The surface-pressure covariance model

A statistical expression for the surface-pressure covariance is formed from the ensemble-average of the product of (3)

and (4)

1

r2
pð~xs; tÞpð~ys; tÞ ¼

Z
~y

Z
~x

4
qUi

qxj

qVk

qyl

ujvl
qGð~x; ~xsÞ

qxi

qGð~y;~ysÞ

qyk

þ2uivkujvl

q2Gð~x; ~xsÞ

qxi qxj

q2Gð~y;~ysÞ

qyk qyl

þ uiujvkvl � uiujvkvl � uivkujvl � uivlujvk

� ��

�
q2Gð~x; ~xsÞ

qxi qxj

q2Gð~y;~ysÞ

qyk qyl

	

� 2
qUi

qxj

ujvkvl
qGð~x; ~xsÞ

qxi

q2Gð~y;~ysÞ

qyk qyl

� 	

� 2
qVk

qyl

uiujvl
qGð~y;~ysÞ

qyk

q2Gð~x; ~xsÞ

qxi qxj

� 	

2
6666666666666666666666664

3
7777777777777777777777775

d~xd~y. (5)

The terms in (5) are grouped by interaction type. The 1st, 4th, and 5th groups on the right-side of (5) represent

interactions between turbulence stresses and mean shear (TMS). The 2nd and 3rd groups are turbulence interactions

with turbulence (TT).
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The 3rd, 4th, and 5th groups, in braces, are zero, if the fluctuating velocity field at a point satisfies a normal

probability distribution: the 3rd group because the 4th-order moment in the cumulant tensor can be written as products

of 2nd-order moments and the 4th and 5th groups because odd-order moments are zero for symmetric distributions. A

turbulence field cannot satisfy exactly a normal distribution, but for homogeneous turbulence and for turbulence near

the center of a shear flow, the probability distribution for the fluctuating velocity field is nearly normal (Townsend,

1980, p. 128). Neglecting these terms, the final surface-pressure covariance expression to be modeled is

1

r2
pð~xs; tÞpð~ys; tÞ ¼

Z
~y

Z
~x

4
qUi

qxj

qVk

qyl

ujvl

qGð~x; ~xsÞ

qxi

qGð~y;~ysÞ

qyk

þ2uivkujvl
q2Gð~x; ~xsÞ

qxi qxj

q2Gð~y;~ysÞ

qyk qyl

2
6664

3
7775d~xd~y. (6)

The right-side of (6) requires knowledge of the mean-shear field, of the two-point fluctuating-velocity correlation

function, and of an appropriate Green’s function. The mean shear can be diagnosed from RANS. Models are required

for the two-point fluctuating-velocity correlation function and for the Green’s function. We recognize that wall-

bounded flows can support skewed statistics that may not support some of the simplifying assumptions that lead to Eq.

(6). The final success of this development, therefore, will rest on the comparisons between model predictions and

measurements.

The two-point velocity correlation (of ui and vk) can be written as the product of a one-point velocity correlation (of

ui and uk from RANS) and a spatially and temporally varying correlation coefficient

uivk � uiuk Cik. (7)

For a statistically stationary flow field, the only dependence of the surface-pressure covariance on time enters through

the time dependence of the correlation coefficient.

The mean-shear values in (6) are from separated points in the flow field. Thus, knowledge of the 3-D mean-shear

statistic is required. A convenient (but not necessary) simplification to (6) is achieved by recognizing that the correlation

function is significant only within a bounded correlation volume. If the mean-shear varies slowly over this correlation

space, the mean-shear contribution is effectively a one-point quantity

qVk

qyl

�
qUk

qxl

. (8)

The practical advantages of (7) and (8) are that (i) they introduce an explicit dependence of the source terms on RANS

data and (ii) they limit the extraction of the required RANS data to a common point in the mean flow field. Also, the

correlation space is the natural coordinate frame for the inner integral in (6), because the RANS data are approximately

constant within it. An explicit dependence on correlation space can be introduced by the transform of coordinates from

ð~x;~yÞ to ð~x;~rÞ, where ~r ¼ ~y� ~x. Substituting (7) and (8) into (6) and transforming coordinates, we have

1

r2
pð~xs; tÞpð~ys; tÞ ¼

Z
~x

Z
~r

4
qUi

qxj

qUk

qxl

ujulC
jlqGð~x; ~xsÞ

qxi

qGð~r; ~x;~ysÞ

qrk

þ2uiukujulC
ikCjlq

2Gð~x; ~xsÞ

qxi qxj

q2Gð~r; ~x;~ysÞ

qrk qrl

2
6664

3
7775d~rd~x. (9)

The practical advantage of using (9) is that the inner integral will converge within a limited subvolume in space, a

desirable characteristic for discrete integration.

Evaluation of (9) requires the computation of a large number of terms, many with negligible contribution. The

number can be reduced considerably by retaining only those terms which contribute to boundary-layer flows at high

Reynolds number. If the boundary-layer thickness is much smaller than the local radius of curvature of the geometry,

the boundary layer will resemble a flat-plate boundary layer whose mean-flow statistics vary rapidly only in the wall-

normal direction and Reynolds-stresses are the three energy terms and one shear-stress term

Uið~xÞ � UðyÞ and uiujð~xÞ 2 u1u1ðyÞ; u2u2ðyÞ; u3u3ðyÞ; u1u2ðyÞ

 �

. (10)

The Reynolds stresses in (10) are one-point statistics. In retaining only these correlations, we risk losing terms that

become nonzero for nonzero separations. They are believed to be small, however, we note that this step may be a source

of model error. Again, the final success of the finished model must be evaluated by comparisons to measurements.
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Simplifying (10) with (9), the surface-pressure covariance equation becomes

1

r2
pð~xs; tÞpð~ys; tÞ ¼

Z
~x

Z
~r

4
qU

qy

qU

qy
u2u2C22qGð~x; ~xsÞ

qx

qGð~r; ~x;~ysÞ

qr1

þ2uiukujulC
ikCjlq

2Gð~x; ~xsÞ

qxi qxj

q2Gð~r; ~x;~ysÞ

qrk qrl

2
6664

3
7775 d~rd~x. (11)

The boundary-layer assumption isolates in (11) only one TMS contribution as dominant. It depends on the C22

correlation function. The identification of this term as the TMS partial-pressure contribution agrees with Chang et al.’s

(1999) definition.

A number of TT contributions remain. They can be classified as turbulence normal-stress/normal-stress interactions

(TTN), mixed turbulence normal-stress/shear-stress interactions (TTM), and turbulence shear-stress/shear-stress

interactions (TTS). Here we depart from Chang et al. (1999). The current model-development transfers the derivatives

from the source terms to the Green’s functions, whereas Chang et al. (1999) distribute the spatial derivatives within the

source terms. Consequently, their TT partial pressures are difficult to associate directly with the apparent partial

pressures from (11). A notable difference is the absence of the cross-stream contributions to the Reynolds stresses in

(10). The uw and vw stresses are zero. Chang et al.’s (1999) partial pressures containing the w component of the

fluctuating velocity are dominant at low frequencies and wavenumbers. Chang et al. (1999) document strong

cancellations among their partial-pressure source terms in the low frequency/wavenumber range. Their total spectrum is

attenuated relative to the separate partial-pressure contributions. A similar observation is reported by Kim (1989) who

shows that although the pressure field in an incompressible flow is elliptic, contributions to the mean-square statistic are

local. The distant terms, contributing to the low frequency/wavenumber range, cancel in forming the statistic. By

writing (11) in terms of the Reynolds stresses, not in terms of gradients of the fluctuating velocities [like Chang et al.

(1999)], we may have accommodated much of the observed cancellation. This conjecture is worthy of further

investigation in a separate work.

Although written in terms of four independent variables, the pressure covariance is assumed to be a function only of

the space, D~x ¼ ~xs �~ys, and time, Dt ¼ t� t, separation

1

r2
pð~xs; tÞpð~ys; tÞ �

1

r2
pðD~x;DtÞpð0; 0Þ �

1

r2
RppðD~x;DtÞ. (12)

The spatial separation vector lies in the plane of the wall and has components in the stream-wise and cross-stream

directions. Expression (11) provides a governing equation for the surface-pressure covariance whose source terms use

RANS data as input. To close the expression, models for the turbulence-velocity correlation functions and for the

Green’s functions must be chosen.
2.3. Green’s-function modeling

The use of the boundary-layer approximation (10) motivates using the flat-plate Green’s function to close (11). The

flat-plate Green’s function states that the influence of a volumetric source term decays as the inverse distance to the

surface point

Gð~x; ~xsÞ � �
1

2p
1

~x� ~xsk k
. (13)

Note that we apply this Green’s function to all source terms in the boundary layer, regardless of their size and decay

times. Also, we do not consider compressibility in our formulation. Expression (11) uses the first and second derivatives

of the Green’s function. Analytic expressions for these derivatives are

qGð~x; ~xsÞ

qxi

�
1

2p
xi � xisk k

~x� ~xsk k
3

and
q2Gð~x; ~xsÞ

qxi qxj

�
1

2p
dij

~x� ~xsk k
3
� 3

xi � xisð Þ xj � xjs

� ��� ��
~x� ~xsk k

5

� �
. (14)

The remaining function to be modeled is the turbulence-velocity correlation function.
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2.4. Modeling the turbulence-velocity correlation function

As noted, the turbulence-velocity correlation function is the sole term in (11) that depends on time; so, the surface-

pressure covariance model will be sensitive to the fidelity of the model for this function. The desired model must be

appropriate for turbulent boundary-layer flow.

Gavin (2002) performed detailed surveys of the turbulence velocity correlations in the outer parts of a high-Reynolds

number boundary layer. He presents contours for the turbulence velocity correlations for separations in the cross-

stream and wall-normal directions and in time. The stream-wise dependence can be inferred from the temporal

dependence assuming Taylor’s frozen flow hypothesis.

Gavin (2002) presents two empirical models tuned to fit his data. One, the Simplified Anisotropic Model (SAM), is

adopted as the turbulence velocity-correlation closure for (11). Gavin’s measurements show that a turbulence-velocity

correlation volume can be modeled as an ellipsoid inclined at an angle y to the wall (see Fig. 2). From his measurements,

he extracts estimates of the inclination angle and of the stretching relationships between the major and minor axes of the

ellipsoid.

Gavin’s SAM modeling approach is to use the measured data to define a mapping of the ellipsoid onto a sphere, then

to apply isotropic turbulence relations to model the correlation data. The transformation begins with the magnitude of

the space/time separation vector between the correlated points

r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� xref Þ þ ucDtð Þ

2
þ ðy� yref Þ

2
þ ðz� zref Þ

2

q
. (15)

Gavin rotates this separation into the major/minor-axis coordinate frame of the ellipsoid

~x ¼

cosðyÞ � sinðyÞ 0

sinðyÞ cosðyÞ 0

0 0 1

2
64

3
75
ðx� xref Þ þ ucDt

y� yref

z� zref

2
64

3
75, (16)

then scales the major/minor coordinate axes onto the axes of a sphere. The correlation values in the transformed space

depend only on the effective radius

r� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x1
g1

� �2

þ
x2
g2

� �2

þ
x3
g3

� �2
s

. (17)

The stream-wise dependence assumes Taylor’s frozen flow. Gavin’s measurements allowed him to identify a convection

velocity, uc, to use in (15). His other model parameters were tuned to fit the data.

Using the radius given by (17), Gavin invokes the classical formulae for the velocity correlation functions in an

isotropic flow

Cijðx1; x2; x3Þ ¼
xixj

r�2
f ðr�Þ � gðr�Þ½ � þ dijgðr

�Þ, (18a)

where

f ðr�Þ ¼ exp �
r�

Lf

� �
and gðr�Þ ¼ 1�

r�

2Lf

� �
f ðr�Þ. (18b)

The scalar Lf is the correlation length. Table 1 presents a summary of the model parameters reported by Gavin and

those modifications needed to use the SAM approach in (11).

Gavin’s model is designed for the outer parts of the boundary layer and yield the anisotropy observed there. The

model for the surface-pressure covariance, though, integrates across the entire boundary layer and requires a model for
Fig. 2. Gavin’s mapping of an ellipsoidal correlation volume onto a spherical one.
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Table 1

SAM model coefficients reported by Gavin and those used in our model

y g1 g2 g3 Lf (Gavin) Lf (TBLFF) uc (Gavin) uc (TBLFF)

C11 20 1.000 0.700 0.520 0.35d ‘ (RANS) 0.7uref 0.7uref
C12 90 0.500 0.525 0.350 0.35d ‘ (RANS) 0.7uref 0.7uref
C13 35 0.800 0.220 0.40 0.35d ‘ (RANS) 0.7uref 0.7uref
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the turbulence-velocity correlation in regions where Gavin’s SAM model does not apply. To use the SAM approach in

the inner and intermediate parts of the boundary layer, we adopt his model coefficients that define the geometry and

inclination of the correlation ellipsoid but use local values for the turbulence correlation length and for the ‘‘local’’

convection velocity.

Gavin’s convection velocity was 70% of the velocity in the outer flow. It represents an average of the velocity across

the boundary layer. A convection velocity is not needed to integrate (11), the local mean velocity is known, however,

because Gavin’s model parameters were tuned to his convection velocity, the 70% scaling of the local mean velocity had

to be retained in the local SAM for it to agree with Gavin in the outer flow. To improve this approach, additional

measurements are needed that yield appropriate model parameters as functions of the y+ wall coordinate.

The SAM model does not provide a fit for the C12 correlation function. To evaluate its effects, we use the expression

C12 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C11C22

p
as our model.

In Fig. 3, we present separation-time contours of the SAM-modeled correlation functions, and contours for spatial

separations in Fig. 4. These data reproduce the data presented by Gavin. Of note, the correlation volume in time and in

the streamwise direction is large for the C11 component relative to the other components. Both C11 and C33 are

elongated in time and the streamwise direction. The C22 component lacks this elongation and exhibits a markedly

smaller correlation volume relative to C11. Gavin presents a detailed discussion motivating that the boundary layer

physics depends on coherent hairpin vortices. His Appendix D presents a model for the two-point correlation tensor

based on a model for these coherent structures. His model produces a result that the C11 and C33 statistics are elongated

in the flow direction, whereas the C22 statistic is not, yielding support to the thought that hairpin-like coherent

structures are responsible for the dominant boundary layer physics.

The implications of the correlation function forms presented in Fig. 3 are that the turbulence–mean-shear

contributions, which depend solely on C22, will have a different character than the turbulence–turbulence contributions.

Also, because the C11 and C33 terms are elongated in the streamwise direction and in time, the turbulence–turbulence

terms will show a directional preference. The comparatively larger correlation volume for the C11 component also

suggests that those terms depending on C11 remain significant for larger space and longer time separations.

Gavin’s data fits have the most fidelity at small separations, within one correlation length. The modeling error

increases with increasing separation. Our implementation of the SAM model restricts its use to within one correlation

length where the model fidelity is highest.

2.5. The wavenumber-frequency spectrum

The wavenumber-frequency spectrum is the Fourier transform of the covariance function

1

r2
Fppð~k;oÞ ¼

1

2pð Þ3

Z 1
�1

Z 1
�1

Z 1
�1

expð�ið~k~xþ oDtÞÞ
1

r2
Rppð~x;DtÞd~xdDt. (19)

It provides the complete turbulence boundary-layer forcing. Validation data in the literature for the wavenumber-

frequency spectrum under variable pressure gradients is sparse. Notably, Schloemer (1966, 1967) presents data for

favorable, zero, and adverse pressure gradients. Cipolla and Keith (2000) extended Schloemer’s analysis to the

wavenumber-frequency spectrum. Their results for the distribution of energy over the streamwise wavenumber at a

fixed frequency, showed dropouts at discrete wavenumbers. These dropouts resulted from the limited data available to

model the convection velocity for that particular experiment.

Schloemer’s experimental data will be used to partially validate the surface-pressure covariance model (11).

Schloemer measured the surface-pressure frequency spectrum defined by

1

r2
FppðoÞ ¼

1

2p

Z 1
�1

expð�ioDtÞ
1

r2
Rppð~0;DtÞdDt (20)
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Fig. 3. Contours of Gavin’s SAM C11, C22, and C33 correlation function model for separations in the wall-normal coordinate

direction, y, and time, t.

Fig. 4. Vertical profiles and contours in the wall-normal, y, and cross-stream, z, coordinate directions of Gavin’s SAM C11, C22, and

C33 correlation function models.
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which is the Fourier transform of the covariance function at zero spatial separation, D~x ¼~0. The surface-pressure

temporal covariance is recovered from the frequency spectrum through its inverse transform

1

r2
Rppð~0;DtÞ ¼

Z 1
�1

expðioDtÞ
1

r2
FppðoÞdo. (21)

A similar expression can be written relating the surface-pressure wavenumber-frequency spectrum to the space–time

covariance function. In future papers, we hope to validate the entire space–time covariance function.

3. Wall-pressure-model validation

The modeled surface-pressure autospectrum (20) does not impose directly the shape or the amplitude on the predicted

profile. In this sense, it is very different from other contemporary models that attempt to build a spectrum model

around the best fit to experimental data (Goody, 2002). A functional dependence on boundary-layer parameters and on

pressure gradient can be designed into such models but it would be difficult to expect them to perform with fidelity

under the very large range of flow and configuration conditions that are encountered in practice.

To compare to Schloemer (1966, 1967), RANS solutions must be generated that match approximately his favorable,

zero, and adverse pressure gradient cases. Schloemer collected his experimental data in a wind tunnel in which he could

vary the flow speed and the wall geometry. By mounting airfoil sections on the upper wall, he was able to create

favorable and adverse pressure gradients. One approach to reproducing Schloemer’s data is to emulate his geometry

and flow conditions. Our modeling effort along this track did not yield an improved agreement with his reported

boundary layer parameters over a simpler approach with a model geometry. Therefore, we chose to pursue a simpler

method.

3.1. The RANS solution

To generate RANS data similar to Schloemer’s results, a numerical experiment is constructed that provides adverse,

approximately-zero, and favorable pressure-gradient regions. A schematic of the RANS domain is shown in Fig. 5. The

diagram is not to-scale. The geometry consists of an entrance channel, a diffuser, a recovery channel, a contraction, and

an exit channel in serial. The Reynolds number of the computation is 7� 104, based on the entrance channel half height

and on its centerline velocity. The dimensionless entrance channel length is 300 with height 2. This domain size ensures

that the flow entering the diffuser is fully developed. The diffuser rise is 8.7 over a length of 100. The recovery section

height is 10.7 extending a distance of 1700. The duct contracts a height of 8.7 over a length of about 100 to return to

fully-developed channel flow in a duct of height 2 and length 200. The first and last stages of the RANS domain are used

to separate the inflow and outflow boundaries from the nearest measurement stations to minimize their impact on the

extracted data.

The computational domain is an internal flow, so drag losses must be overcome by a mean pressure drop. The

deviation-pressure gradient is zero in this section. The flow conditions and data extraction locations are chosen to be

consistent with Schloemer. We looked for consistent Reynolds numbers based on momentum thickness—7000–9000 for

the adverse pressure gradient profiles, near 1400 for the favorable pressure gradient profiles, and near 5000 for the zero

pressure profiles—and similar shape factors. This Reynolds number range is not the limit of our model. RANS

solutions for boundary layers at much higher Reynolds numbers are routinely computed. For example, computations

for flows around ships have Reynolds numbers of order 109 giving a momentum thickness Reynolds number of order

106. Such Reynolds numbers exceed considerably the Reynolds numbers that can be achieved with DNS or other

boundary-layer-resolving CFD methods.
Fig. 5. Computational domain showing the approximate stations for extracting favorable (FPG), zero (ZPG), and adverse (APG)

pressure-gradient RANS data (colored by static pressure).
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We generate the RANS solutions using an in-house code, UNCLE-TF (Zierke, 1997). The code has been validated

for internal-flow configurations and has been used extensively for Navy propulsor-design work. UNCLE-TF solves the

mean momentum and mass conservation budgets. The turbulence closure uses the two-equation q�o turbulence model

with near-wall damping; q is a turbulence velocity scale interpreted as the square-root of the turbulence kinetic energy,

and o is an inverse turbulence time scale related to turbulence dissipation. Mesh density in the supporting grid uses 131

grid points across the channel and 439 grid points in the flow direction. Sublayer resolution is targeted. The near-wall

spacing of the grid achieves a yþ � u�y=n value for the first grid point away from the wall of between 0.25 and 0.5; the

friction velocity u� is defined by u� �
ffiffiffiffiffiffiffiffiffiffi
tw=r

p
where tw is the wall shear stress.

The zero pressure gradient results are extracted from the recovery stage of the numerical simulation. The recovery

section is sufficiently long that fully-developed channel flow is achieved prior to entering the contraction. The Reynolds

number of the simulation is chosen based on the best match between the zero-pressure gradient RANS results and

Schloemer’s data. The adverse and favorable pressure gradient stations are chosen where the boundary-layer

parameters and the peak in the turbulent kinetic energy, are in reasonable agreement with Schloemer (1966, 1967).

Table 2 compares boundary-layer statistics from Schloemer to the extracted RANS results. The agreement is good

for the length scale and skin friction data. The largest deviation is in the first shape factor (the ratio of the boundary-

layer thickness to the displacement thickness) for the zero pressure gradient case. Schloemer reports a value near 7. The

RANS data yield a value near 9. However, the magnitudes of the dimensionless surface-pressure gradients differ from

Schloemer’s measurements. We were not able to match all of Schloemer’s parameters exactly while choosing profiles to

extract from the RANS solution; therefore, we favored agreement with the length scale and skin friction data because

they are strongly related to the velocity profile and its gradients, data that have a significant impact on the model

results. Because the pressure gradient is not used in our modeling, we relaxed our requirements on matching this

parameter.

Also presented in Table 2 are values for the boundary-layer edge velocity, the friction velocity, and the boundary-

layer thickness, displacement thickness, and momentum thickness nondimensionalized by the entrance channel half-

height and centerline velocity. These data provide a complete disclosure of the mean flow field characteristics to

facilitate conversion between nondimensionalizations and recovery of dimensional results, if desired.

Mean-velocity profiles are presented in Fig. 6. The solid lines are from RANS and Schloemer’s data are the symbols.

The agreement is good. The largest deviation is for the zero-pressure-gradient case, consistent with the reported

difference in the first shape factor. The mean-velocity data in wall coordinates are presented in Fig. 6(b). The zero

pressure gradient case follows the universal profile and shows a well developed logarithmic region. The adverse- and

favorable-pressure gradient cases are close to the universal curve for the inner region of the boundary layer but deviate

in the outer flow, where the adverse pressure gradient exceeds the zero pressure-gradient one while the favorable

pressure-gradient profile undershoots the zero-pressure gradient result.

Turbulence data from RANS are presented in Fig. 7. The dimensionless turbulence length scale, Fig. 7(a), for the

q�o model is defined as ‘ � bq=o, where b, the proportionality constant, is observed to be between 0.54 and 0.65 (0.54
Table 2

Summary of the boundary-layer parameters for Schloemer’s adverse, favorable, and zero pressure gradient data compared to the

RANS results

Favorable Zero Adverse

Schloemer Schloemer RANS Schloemer Schloemer RANS Schloemer Schloemer RANS

Rey 1340 1470 1414 4500 5800 5041 7380 9180 8631

d=d� 12.900 14.700 11.527 6.950 6.970 9.241 4.860 4.860 4.494

d�=y 1.350 1.390 1.292 1.345 1.340 1.266 1.577 1.585 1.493

Cf 470� 10�3 4.50� 10�3 4.91� 10�3 3.10� 10�3 3.00� 10�3 3.60� 10�3 1.82� 10�3 1.76� 10�3 1.86� 10�3

(y/tw)dP/dx �0.128 �0.216 �0.364 �0.058 2.120 2.070 3.420

ue 0.545 0.201 0.227

u� 2.70� 10�2 8.51� 10�3 6.93� 10�3

d 0.552 4.199 3.637

d� 0.048 0.454 0.809

y 0.037 0.359 0.542

Red 21 061 58971 57 892

Re� 90 271 393

Re 70 000 70000 70 000



ARTICLE IN PRESS

u/ue

y/
δ 

0.0 0.2 0.4 0.6 0.8 1.0 1.2
0.0

0.2

0.4

0.6

0.8

1.0

1.2

Zero

Favorable

Adverse

y+

u+

10 10 10 10
0

5

10

15

20

25

30

35

10 0 10 1 10 2 10 3
0

5

10

15

20

25

30

35

Zero

Favorable

Adverse

Zero

Favorable

Adverse

10 10 10 10

5

10

15

20

25

30

35

Zero

Favorable

Adverse

(a) (b)

Fig. 6. Mean-velocity profiles: (a) compared to Schloemer’s data and (b) in wall coordinates. Open symbols are simulations; closed

symbols are Schloemer’s measurements. J, zero pressure gradient; &, favorable pressure gradient; n, adverse pressure gradient.
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Fig. 7. Profiles of the turbulence correlation length (‘) and kinetic energy (k) from RANS: top panels normalized by the boundary

layer depth (d) and the velocity at d (ue) and the bottom panels in wall units.
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is used for the current model). The dimensionless turbulence length scale shows an increasing trend from adverse to

favorable pressure gradient. The data are nondimensionalized on the boundary-layer thickness, so the larger value for

favorable pressure gradient reflects the thinning boundary layer for that case. The turbulence length scale for the

adverse pressure gradient is physically longer, but the boundary-layer thickness is comparatively larger too.

Profiles of the turbulence kinetic energy (tke) are presented in Fig. 7b. Schloemer presents data for the streamwise

root-mean-square (urms) value of velocity. The square of that statistic provides one component of the tke. The other

components, though, are not reported, so a tke value cannot be recovered and a direct data comparison cannot be

made. Schloemer’s streamwise-velocity r.m.s. values for the favorable and zero pressure-gradient cases peak very close

to the wall. The RANS results do as well. His adverse pressure-gradient data show a peak in the urms profile near y/d of

0.2, as do the RANS tke results. Our experience shows that the predicted surface-pressure variance is sensitive to the

location of the peak in the tke profile meaning that matching this location is as important as matching the other

boundary-layer statistics in extracting a validation data set.

3.2. Numerical integration

The terms contributing to the turbulent boundary-layer surface-pressure spectrum are sufficiently complicated that

an analytic solution to (11) is unlikely. Instead, the convolution is evaluated using numeric integration over an

integration volume sufficiently large to approximate an infinite domain. The source terms are function of the distance to

the nearest wall, so this coordinate direction is treated separately in the numeric integration. We compute the

horizontally integrated source terms for each cell in the wall normal direction and sum the contributions. To integrate

the horizontal directions in physical space and all directions in correlation space, we use discrete Gauss–Legendre

integration which should provide optimum efficiency for smooth functions. The discrete evaluation of the convolution

replaces the integrals with summations of the source terms at specified locations weighted by appropriate weighting

functions

1

r2
RppðD~xs;DtÞ ¼

Z
~x

Z
~r

SRCTMS þ SRCTTN þ SRCTTM þ SRCTTSð Þd~rd~x

�
X
~x

X
~r

SRCTMS þ SRCTTN þ SRCTTM þ SRCTTSð ÞW~x;~rD~rD~x. ð22Þ

Values for the integration locations and for the applied weights are returned from the Gauss–Legendre integration

subroutine, GAULEG, from Press et al. (1988).

3.3. Validation results

Integrand and cumulative results for the surface-pressure variance, Rppð~0; 0Þ=r2, are presented in Fig. 8,

nondimensionalized by inner variables. The variance (black) is the sum of the TMS (red)1 color is used only in the

web-version of the paper and TTN (green) contributions. The TTM (blue) and TTS (orange) profiles are shown to have

negligible effect. One sees in the data an increasing contribution from the outer part of the boundary layer and from the

TTN term in the transition from favorable to adverse pressure gradient. The TMS term consistently has a local

maximum in the neighborhood of y+
¼ 10–12 and decays at intermediate distances. The TTN term becomes

pronounced at intermediate distances. In the outer boundary layer for the adverse pressure-gradient case, a second peak

in the TMS term is observed and the TTN term remains significant for most of the boundary layer. The significant

change in the TMS and TTN behaviors across the boundary layer with pressure gradient would be difficult to capture in

general with ad hoc models.

The integrand profiles in Fig. 8 suggest the existence of two separate contributions, one from the inner layer and a

second from the outer layer. The inner layer contribution is common for each of the pressure gradients. The outer layer

contribution is absent from the favorable pressure gradient case, is evident under zero-pressure gradient, and is

pronounced for the adverse pressure-gradient condition. The existence of inner- and outer-layer scaling contributions to

surface-pressure spectra exists in the literature [see Goody and Simpson (2000) for an overview].

The surface-pressure covariances for the favorable, zero, and adverse pressure gradient cases are presented in Fig. 9.

The color scheme is consistent with Fig. 8. The favorable pressure gradient case is characterized by a smaller correlation

than the zero and adverse pressure-gradient cases, and significant contributions are bounded to a smaller band of time

separations. The zero and adverse pressure gradient correlations are significant over a wider band of time separations.
1Color is used only in the web-version of the paper.
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Fig. 8. Integrand (solid) and cumulative (dashed) contributions to the surface-pressure variance in wall coordinates: TTM is slightly

negative, and TTS is near zero.
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The adverse pressure gradient case, though, has markedly greater correlations, a factor of �6 higher than the zero and

favorable pressure-gradient cases. For each case the TMS contribution is dominant, however, one sees again the TTN

term plays an increasing role in the transition from favorable to adverse pressure gradient.

The TMS term depends on the C22 correlation coefficient whose correlation volume is not inclined to the flow, thus

the TMS term is symmetric around zero separation time. The asymmetries in C11 and C33 with separation time are

significantly impressed on the TTN profiles, as one sees a preference for negative time separations.

Components of the surface-pressure spectra are presented in Fig. 10. Neither the TTM nor the TTS contributions are

significant. The primary contribution is from TMS interactions for all cases. The TTN contribution has an increasing

importance with decreasing pressure gradient.

The total spectra are replotted in Fig. 11 with Schloemer’s data overlayed as symbols. The low-frequency levels of the

predicted spectra agree well with Schloemer’s. One observes the increasing amplitude of the spectra at low frequency

with the trend from favorable to adverse pressure-gradient and a tendency to return to a common high frequency tail

under inner-variable scaling. The collapse at high frequencies is also reported in the literature. Goody and Simpson

(2000) provide an overview. The separate inner/outer layer contributions to the wall-pressure spectrum are observed in

these data: note the roll-offs near 0.03 and 0.4 for the zero and adverse pressure gradient cases. Presumably the low

frequency roll-off is associated with outer-layer activity, while the high frequency roll-off is associated with the inner-

layer contributions. The double roll-off character is not seen as readily in the favorable pressure-gradient case, in

agreement with the observation from Fig. 8 that the outer-layer is largely inactive for this case.
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The outer-layer is much more active in the adverse pressure-gradient case, accounting for the significantly enhanced

spectral levels at low frequencies. The dip in the adverse pressure-gradient spectrum at intermediate frequencies suggests

that the inner-layer and outer-layer contributions may be independent. This behavior for intermediate frequencies is not

observed in Schloemer’s data. One could infer a mild dip in the results presented by Goody and Simpson (2000).

The model predictions at zero pressure gradient show an extensive o�1 regime not seen in Schloemer’s data. This

regime is associated with the logarithmic zone of the turbulent boundary layer (Gravante et al., 2000). An extensive

logarithmic layer is clearly observed in Fig. 6 for the RANS results. The RANS velocity profile matches the universal

profile very well. The noticeable difference in Fig. 6 between the RANS mean-velocity profile and Schloemer’s data

indicates that Schloemer’s boundary layer does not exhibit a similarly extensive logarithmic zone, and this explains the

difference at intermediate frequencies between the RANS-based predictions and Schloemer’s measurements.

The agreement with the favorable pressure-gradient data is reasonable though the low frequency amplitude is

underpredicted. The high-frequency tail of Schloemer’s favorable pressure-gradient data is offset from the zero and

adverse pressure-gradient cases. His favorable-pressure gradient data required significant probe volume corrections

over the entire frequency range because the boundary layer was very thin. A final assessment of the surface-pressure

spectrum model will require additional experimental data-sets or possibly high-Reynolds-number Direct Numerical
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Simulations (DNS) or Large-Eddy Simulations (LES); see Choi and Moin (1990) and Chang et al. (1999). Of particular

interest is the structure of the turbulence-velocity correlation functions in the inner and intermediate layers of the

turbulent boundary layer.



ARTICLE IN PRESS

(a) (b)

Fig. 11. Predicted surface-pressure spectra (lines) compared to (a) Schloemer’s data (symbols) for favorable (square), zero (circle), and

adverse (triangle) pressure gradients and (b) the Bull and Thomas, Farabee, Schloemer, Willmarth and Woodrigde, and Blakewell zero

pressure gradient data-sets.
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4. Summary and conclusions

A stochastic model for the surface-pressure covariance and associated wavenumber-frequency spectrum has been

developed that uses RANS data as input. The model development begins with the exact equation for the surface-

pressure covariance then closes the expression with boundary-layer-specific assumptions. This foundation permits the

coupled model to respond to local geometry and flow complications through the fluids solver, exploiting the maturity

that RANS turbulence closures have gained over decades of development. Contemporary RANS models are used for

bow to stern simulations of ships, to predict flow effects from detailed features on aerospace vehicles, for multi-

component modeling of engines, and for many other purposes. In principle, the coupled model inherits this flexibility.

Validation against the data-set reported by Schloemer for surface-pressure frequency spectra under favorable, zero,

and adverse pressure gradients shows that the model appears to predict wall-pressure spectra well for the range of

Reynolds numbers reported by Schloemer and responds appropriately to pressure gradients. The importance of

considering both turbulence mean-shear interactions and turbulence normal-stress interactions individually is clearly

illustrated. Both contribute significantly but respond strongly to different parts of the turbulent boundary layer.

The contributions to the TBL wall-pressure autospectra from the TMS and TTN terms throughout the boundary

layer agree with qualitative observations made in the literature (Schloemer, 1966, 1967; Goody and Simpson, 2000;

Gravante et al., 2000), but might be validated further using time accurate solutions of turbulent flow fields using tools

like Direct Numerical Simulation (DNS) or Large Eddy Simulation (LES). Computations such as those made by Choi

and Moin (1990) and Chang et al. (1999) are available, and attempt to show the correlation of wall pressures to

turbulent structures in the boundary layer. Unfortunately, the simulations are for very low Reynolds numbers (3200

based on the channel half-width). When computational resources allow for time accurate CFD tools to generate

solutions for flow fields at reasonably high Reynolds numbers, the model presented here could be further validated.

Further validation of the RANS-based model would benefit from data for stronger adverse and favorable pressure

gradients. Favorable pressure-gradient measurements would have the most benefit, because the fidelity of the model

comparison to Schloemer’s favorable pressure-gradient case was less clear. Comparisons to data for 3-D boundary

layers are also warranted. Validation data for airfoil sections or in pipe elbows near regions of high pressure gradients

are examples.

Finally, a validation of the complete wavenumber-frequency spectrum has not yet been attempted. Comparisons of

the new model for the surface-pressure wavenumber-frequency spectrum to existing models documented by Graham

(1997) at zero-pressure gradient, along with the data of Cipolla and Keith (2000) derived from the measurements of

Schloemer (1967) in favorable and adverse pressure gradients are planned as follow-on work. We also hope to compare

space–time variations of wall-pressure fluctuations to the DNS results of Na and Moin (1998) in adverse pressure

gradients.
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